
Hughes Information Technology Corporation
Upper Marlboro, Maryland

170-WP-002-001

Thoughts on HDF-EOS Metadata

White Paper

White Paper—Not intended for
formal review or government approval.

December 1995

Prepared Under Contract NAS5-60000

RESPONSIBLE ENGINEER

B. Fortner \s\ 12/20/95

Brand Fortner Date
Doug Ilg
EOSDIS Core System Project

SUBMITTED BY

Larry Klein \s\ 12/20/95

Larry Klein Date
EOSDIS Core System Project

White Paper 170-WP-002-001

This page intentionally left blank.

White Paper iii 170-WP-002-001

Abstract

This document is a discussion paper on the use of parameter=value metadata inside HDF-EOS
datafiles. Here HDF refers to the scientific data format standard selected by NASA as the
baseline standard for EOS, and HDF-EOS refers to EOS conventions for using HDF. In this
document we discuss metadata in general, and the various ways that metadata should be stored in
the HDF-EOS files. We also discuss how we can use metadata to describe the internal structure
of the HDF-EOS file.

Note

This document is being made available even in preliminary form because of the high level of
interest in HDF-EOS efforts, and to give people the chance to comment on and to change our
direction of HDF-EOS, long before decisions are burned into silicon, so to speak.

Credits

This document was created with material from Doug Ilg (Hughes STX), Ted Meyer (National
Aeronautics and Space Administration (NASA)), and Larry Klein, Brand Fortner, David Wynne
(Applied Research Corporation). Comments and suggestions should be sent to:

Brand Fortner
Applied Research Corporation
1616A McCormick Dr.
Landover, MD 20785
USA

Email: bfortner@eos.hitc.com
Phone: (301) 925-0779
Fax: (301) 925-0321

Keywords: HDF-EOS, Metadata, Data Formats, PVL, Standard Data Products, Disk Formats,
Browse, Arrays

White Paper iv 170-WP-002-001

This page intentionally left blank.

White Paper v 170-WP-002-001

Contents

Abstract

1. Introduction

1.1 Purpose ... 1-1

1.2 Organization ... 1-1

1.3 Review and Approval... 1-1

2. White Paper Format

2.1 A Need for Structural Metadata ... 2-1

2.2 Should Structural Metadata be Stored as Attributes or as Text? 2-1

2.3 What is PVL? ... 2-2

2.4 How Should the Structural Metadata Text be Stored?... 2-2

2.5 Where Should Structural Metadata Text Attributes be Stored?..................................... 2-3

2.5.1 What Information Should the Structural Metadata Contain?............................. 2-4

2.6 HDF-EOS Configuration Files... 2-9

Tables

2-1. Metadata Definitions .. 2-1

2-2. Structural Metadata Text.. 2-3

Abbreviations and Acronyms

White Paper vi 170-WP-002-001

This page intentionally left blank.

White Paper 1-1 170-WP-002-001

1. Introduction

1.1 Purpose

There is much discussion in EOS about metadata, or ‘information about data’. In this discussion,
we will limit the term ‘metadata’ to refer to primarily scalar information, such as
‘observer=david’, that describes data. We will ignore the philosophical issue about one persons
data being another persons metadata…

1.2 Review and Approval

This White Paper is an informal document approved at the Office Manager level. It does not
require formal Government review or approval; however, it is submitted with the intent that
review and comments will be forthcoming.

Questions regarding technical information contained within this Paper should be addressed to:

Brand Fortner, (email address: bfortner@eos.hitc.com).

Questions concerning the distribution should be addressed to:

Data Management Office
The ECS Project Office
Hughes Information Technology Corporation
1616 McCormick Drive
Upper Marlboro, Maryland 20774-5372

White Paper 1-2 170-WP-002-001

This page intentionally left blank.

White Paper 2-1 170-WP-002-001

2. White Paper Format

2.1 A Need for Structural Metadata

In the EOS system there is ‘core’ metadata, that must exist for every data product where
applicable, and ‘product specific’ metadata, that may exist for only one particular product, or
perhaps even individual granules. In either case, the EOS defined metadata deals with products
and granules only. It typically does not deal with sub-granule information, such as what
components are contained within a granule.

We therefore have a need for a third category of metadata that describes the contents of each
granule, which for the most part will consist of single HDF-EOS files. We need this third
component, which we will call ‘structural’ metadata, to describe each component contained in
the granule in considerable detail, and in addition describe the relationships between the various
components.

Table 2-1. Metadata Definitions
Type of Metadata Description

Core Metadata Info about data product. Fields are common across data products.

Product-Specific Metadata Info about data product. Fields are specific to that data product.

Structural Metadata Info about the structure and contents of a particular granule.

With this third metadata type (which we assume would be contained within the granule files), we
or anyone else can use the contained information to provide general services such as listing the
components, subsetting and subsampling the components by parameter and geolocation, and so
on.

2.2 Should Structural Metadata be Stored as Attributes or as Text?

How should we provide this information? Some of the needed structural metadata is already
inherent in the makeup of the HDF file itself. For example, standard HDF calls make it easy to
list the contained components by name, or to do subsetting and subsampling by parameter or
row/column. But other information, such as geolocation relationships, is just not normally there.

One way to provide this information is through the HDF feature of Attributes. For example, an
array may have an associated HDF Attribute that describes its relationship to another geolocation
array. We have a couple problems with this approach. The first problem is that only SDS arrays
and the file itself can have associated Attributes. HDF data objects such as Vdatas and Vgroups
cannot have Attributes. The second problem is that the use of attributes could greatly increase the
number of data elements in the HDF directory, something that we are trying to minimize.

White Paper 2-2 170-WP-002-001

Our proposed solution is to store structural metadata as a text block that contains PVL metadata
statements. This is an attractive option for a several reasons. First, PVL will be used for EOS
core and product-specific metadata, so all three kinds of EOS metadata will now be in the same
format. The second reason is that it potentially greatly decreases the number of data element
entries needed in the HDF file directory. Yet another reason is that it makes it possible for
humans to directly read and verify the structural metadata. This last feature will be especially
important for data producers that will use configuration files, described later in this document.

One problem with using PVL text blocks is the need to parse the text to find the values of
particular parameters. This problem will be mitigated somewhat by the need to develop efficient
parsers for the core and product-specific metadata: we will just leverage off of their efforts. We
expect that parsing, although relatively slow when compared to accessing information via
attributes, will turn out to be a minor part of the computational burden of reading data from
HDF-EOS files (although it increases the complexity of our HDF-EOS library).

2.3 What is PVL?

PVL stands for Parameter Value Language. It is a text standard for assigning names to values
that was developed by the Consultative Committee for Space Data Systems (CCSDS). It is
directly derived from ODL, used in the Planetary Data System (PDS) at JPL. For our purposes, it
is merely a syntax for naming values, and for grouping those names. For example, consider the
following brief example:

PVL Code Example: group = DataParameter;

object = "Temperature";

DataType = "float32";

end_object = "Temperature";

end_group = Dataparameter;

Here an object of type DataParameter contains the following attributes: an object name
(Temperature), and a DataType (float32). PVL defines the syntax, such as ending every line with
a semicolon. This example, although short, illustrates the two major features of PVL that we use:
the naming of values (alphanumeric, numeric, etc.) and the grouping of those values. That’s it.
For more information, see the PVL Tutorial and PVL Language Specification, documents
CCSDS641.0-G-1 and CCSDS641.0-B-1 respectively. Note that quotes around the values are
optional. They are only required if you want to include spaces or special characters in the value
string.

2.4 How Should the Structural Metadata Text be Stored?

Now we have decided to store structural metadata as a PVL text block. Where, exactly, should
we store this text block? We cannot use HDF Annotations, as that feature will be phased out. We
can instead store the text block as a single HDF Attribute, with a number type of character string
(DFNT_CHAR8). The size of this attribute would be the size, in characters, of the text block.

White Paper 2-3 170-WP-002-001

There is a problem with character attributes, however: they are limited to 32K bytes for a single
attribute. We would rarely encounter this limit, but when we do, we need a plan. Our current plan
is to store the additional metadata in additional attributes. These attributes will be linked together
by a naming convention.

For example, the first metadata attribute for core metadata will always be named
CoreMetadata.0. If this attribute is not big enough, a second attribute will be created, of name
CoreMetadata.1, and so on up to CoreMetadata.9. Similarly, product specific metadata will be
stored as a text attribute of name ProductMetadata.0 through ProductMetadata.9, and structural
Metadata will be named StructMetadata.0 thru StructMetadata.9.

Table 2-2. Structural Metadata Text
Type of Metadata Name

Core CoreMetadata.0

Product Specific ProductMetadata.0

Structural StructMetadata.0

2.5 Where Should Structural Metadata Text Attributes be Stored?

HDF Attributes can be attached to one of only two things: to the file itself (global attributes), or
to an SDS array. This is not usually a problem for core and product specific metadata, since
typically this information relates to the entire file as opposed to a component of the file.

This may however be a problem for structural metadata. The natural place for this information is
inside the structure that it describes. For example, suppose an HDF file (granule) consists of 4
swath structures. You would naturally expect the structural metadata that describes each swath to
be stored inside the swath itself.

That sounds good, but there is a problem. Not all swaths have SDSs. Therefore, there is no way
to place an attribute in structures that do not contain SDSs. We therefore propose to keep all
structural metadata at the global level, in a single text block (possibly spread over multiple
character attributes, as described above).

For example, even if an HDF-EOS file contains 3 objects such as swaths, the structural metadata
for all 3 swaths would be stored in a single global text attribute. One advantage of this scheme is
the there is an almost exact, one-to-one mapping of this single structural metadata text block, and
the PVL configuration file that may have been used to create the HDF-EOS file in the first place.
These configuration files will be described in a later section.

A disadvantage to this scheme is that the metadata that relates to a particular object, such as a
swath, is not stored as part of the swath. We can hide this detail through our HDF-EOS library in
the following way: when you request metadata for a particular swath within the HDF-EOS file,
our subroutines will scan the global metadata text block, and pull out only the metadata that
relates to the displayed object.

White Paper 2-4 170-WP-002-001

2.5.1 What Information Should the Structural Metadata Contain?

Both the Core and Product Specific Metadata contain information that relates either to the
Standard Data Product, or to the Granule itself (usually, a single HDF file). That leaves the
structural metadata to describe information about particular components within the granule, what
is sometimes called sub-granule information. We can think of three kinds of information that the
structural metadata should contain:

• Dimension Information—Material that describes the dimensions used to size arrays and
tables.

• Component Information—Material that relates to a specific component. An example
would be say the name, units, scaling factors, etc. of a particular data array.

• Geolocation Information—Material that describes the relationship of data arrays to
geolocation tables or arrays, used for subsetting or subsampling by geolocation.

We will discuss each of these in turn.

2.5.1.1 Dimension Information

Every array and table in the HDF file must have dimensions associated with it. For our purposes,
these dimensions are not typically data objects in the file, but are just shorthand ways of
describing the dimensions1. Usually, a single dimension specification will be used many times
for many different tables and arrays. An example of using PVL to specify a dimension is shown
below (this example is for illustration only, as the details may change before it is released):

Dimension Example: group = Dimension;

object = "Track";

size = 600;

end_object = "Track";

object = "Xtrack";

size = 25;

end_object = "Xtrack";

object = "Dim3";

size = 100;

end_object = "Dim3";

1Actually, the HDF routines do create dimension data objects, but they serve a different purpose.

White Paper 2-5 170-WP-002-001

end_group = Dimension;

In this example, a dimension called Track is declared as size 600, another dimension called
Xtrack as size 25, another called Dim3 as size 100. Other items such as units, etc. can also be
specified inside the dimension specification block. The group= and end_group lines are used to
group all of the dimension definitions.

Note how we have two levels of grouping: one of the parameters inside objects, and another of
the objects inside the group. In the PVL world, the keyword object and the keyword group are
synonyms: as a convention we use group to denote larger collections, to improve readability.

2.5.1.2 Component Information

The DataParameter group shown below is used to list information about the data components of
an HDF-EOS structure. These components can be data arrays or tables. Information such as the
number type and the associated dimensions are listed here, as shown in the example below.

Component Example: group = DataParameter;

object = "Band_3";

DataType = int16;

DimList = ("Track", "Xtrack");

end_object = "Band_3";

object = "Temperature";

DataType = float32;

DimList = ("Track", "Dim3");

end_object = "Temperature";

end_group = DataParameter;

The example above shows the specification of two 2D arrays. The first array, Band_3, is of
number type int16, and is of the size specified by the two dimensions: Track and Xtrack (we
know it is 2D, because it only has two dimensions associated with it). The second array,
Temperature, also 2D, is of number type float32, and is of size Track by Dim3.

These dimensions and the order of the dimensions are specified by the DimList parameter. Note
the use of parentheses to designate an ordered list of objects. Note also that even though these
two arrays share a dimension, that sharing does not necessarily imply any relationship: they just
both happen to be the same size in that dimension.

White Paper 2-6 170-WP-002-001

The ordering of the dimensions is important. The first dimension listed is always going to be
taken as the slowest varying dimension. This first dimension can if desired be declared as the
UNLIMITED dimension of netCDF and HDF arrays. What UNLIMITED means in is that after
the file is written, it will be possible to increase the size of the array in this first, UNLIMITED,
dimension, without having to rewrite the entire HDF file. This is not possible with any other
dimension.

For arrays and tables that contain geolocation information, we have established the convention of
calling the group corresponding to those components GeoParameter. Other than the name
difference, everything else about the GeoParameter group is identical to the DataParameter
group.

Some of this information will also be available using standard HDF calls. For example, you can
easily find out the dimensionality and number type of any array in an HDF file by using standard
HDF calls. This means that some information will be stored in two places: in the standard HDF
places (dimensions, scales) and in the StructMetadata metadata block. We think this minor
duplication of information is more than offset by the additional functionality provided by the
HDF-EOS conventions.

2.5.1.3 Geolocation Information

Much of the justification for HDF-EOS comes from the ability to provide services on the data
using generic (non product-specific) routines. Most of these services revolve around using
geolocation information to subset and subsample the data. To do this, we need the geolocation
information stored in a known format and organization.

We can think of three ways of providing this geolocation information: by relating data arrays to
corresponding arrays containing geolocation information (latitude/longitude), by using metadata
to describe the mathematical relationship of locations in a data array to geolocation, and finally
by specifying geolocation values for every data value in a table. These three geolocation methods
are used in the three geolocated HDF-EOS structures of Swath, Grid, and Point respectively.

• Swath—Consists of data tables and data arrays that are organized along a track
dimension. Can also be used for profile information. Geolocation (latitude, longitude,
time) will be available as a table of values (one time value per scan line, for example), or
as an array of values (with dimensions of the track dimension by the Xtrack dimension).
Geolocation consists of describing the relationship of the data tables and arrays to the
geolocation table or arrays.

• Grid—Consists of data arrays that were created using a projection (such as Mercator),
with a known mathematical procedure for calculating the geolocation for every data
element in the array.

• Point—Consists of a table of individual data values which have geolocation values
associated with them.

The role of metadata in each case is different. In the Swath case, metadata is used to establish
relationships between the various components. In the Grid case, metadata is used to
establish the parameters for a mathematical transformation. In the Point case, metadata
essentially has no role, as every data value has geolocation directly connected to it.

White Paper 2-7 170-WP-002-001

2.5.1.4 Swath Example

An example of swath metadata is shown below.

Dimension Example: group = Swath;

group = Dimension;

object = "Track";

size = 600;

end_object;

object = "Xtrack";

size = 25;

end_object;

object = "Dim3";

size = 100;

end_object;

end_group = Dimension;

group = DataParameter;

object = "Band_3";

DataType = int16;

DimList = ("Track","Xtrack");

end_object;

object = Temperature;

DataType = float32;

DimList = ("Track","Dim3");

end_object;

end_group = DataParameter;

group = GeoParameter;

object = "Latitude";

White Paper 2-8 170-WP-002-001

DataType = float32;

DimList = ("Track","Xtrack");

end_object;

object = "Longitude";

DataType = float32;

DimList = ("Track","Xtrack");

end_object;

end_group = GeoParameter;

group = DimensionMap;

object = Map1;

DataDimension = "Dim3";

GeoDimension = "Xtrack";

Offset = 0;

Increment = 4;

end_object;

end_group=DimensionMap;

end_group=Swath;

The Dimension and DataParameter groups of this example have been discussed above. The
structure of the GeoParameter group is identical to the DataParameter group, so its meaning
should be clear. The last group, DimensionMap, requires some explanation.

What we need to do is establish a relationship between data arrays and geolocation arrays. If all
of these arrays are always of the same size, say Track by Xtrack, then the relationship is pretty
straightforward. In that case, there would be a one-to-one mapping of locations in the data arrays
to locations in the geolocation arrays.

But suppose that the geolocation array is a different size than the data array. How do we establish
the mapping of the two arrays? We do that by using the DimensionMap grouping. This grouping
establishes a link not between the arrays themselves, but between the dimensions that they use.
That way, if there are many data arrays (or geolocation arrays) of the same size, then we only
need to establish one relationship, rather than one for every pairing of data arrays to geolocation
arrays.

In the DimensionMap group above, we established a relationship between the Xtrack dimension,
used for Latitude and Longitude geolocation arrays and for the Band_3 data array, and the Dim3

White Paper 2-9 170-WP-002-001

dimension, used for Temperature. This relationship says that every element in the Xtrack
dimension matches up with every 4th element (Increment=4) in the Dim3 array, with an initial
offset of zero (offset=0).

2.6 HDF-EOS Configuration Files

One of the things not addressed in the PVL examples is where exactly these components are
stored. We use dimensions to describe the sizes, then we use DataParameter and GeoParameter
to describe the arrays and tables, but are they stored in HDF SDSs or Vdatas? So far we have not
addressed that issue.

One option would be to ignore the issue, and ask people to always access their data through our
library. That way, we would control how and where each data object is stored. This is not
practical, because of the wide range of software out there that uses just HDF, and does not know
or want to know about our software.

We therefore propose that another component of the metadata, specified either by the creator of
the datafile or automatically by our software, is a description of the configuration of the actual
storage of the data arrays. An example is shown below.

Configuration Ex. group = SwathObject;

object = "Band_3";

end_object = "Band_3";

object = "Temperature";

end_object = "Temperature";

object = Sds_1;

Planes = ("Latitude", "Longitude");

end_object;

end_group = SwathObject;

In this example, the HDF file consists of three SDSs, named Band_3, Temperature, and Sds_1.
The first two SDSs are 2D, and both contain a single 2D array. Metadata parameters associated
with each of these two SDSs would be sandwiched inside the object, end_object entries for those
two arrays.

The third SDS is 3D, and contains two 2D arrays (Latitude and Longitude). In general, when
dealing with a series of 2D arrays of the same size and number type, it is more efficient to
combine them in a single 3D array. In this example, the 3D array Sds_1 is of size 2 (number of
2D arrays) by 600 (Track) by 25 (Xtrack).

White Paper 2-10 170-WP-002-001

Why is it useful to explicitly list the locations of the HDF-EOS arrays in the HDF file, instead of
making their locations hidden inside the subroutine library? We can think of a few reasons. The
first is that for people using straight HDF, this configuration information describes, in a human-
readable form, where every data array is stored in HDF terms. The second is that if someone
wanted to, they could write a routine to parse this PVL description and read the arrays directly,
without using our subroutine library. The third is that the data producer may want to organize the
data arrays in very particular way, to for example make subsetting in a particular way more
efficient.

Where is this configuration information created? We propose the following: The information is
always stored in the HDF-EOS file, as part of the metadata for a particular object, be it a swath,
point, or grid. The information can either by specified by the data producer, if they want the
arrays placed in particular places, or it can generated automatically by our HDF-EOS file
creation routines.

We welcome your comments on this brief discussion paper on Metadata.

Brand Fortner (bfortner@eos.hitc.com)
Doug Ilg (dilg@ulabsgi.gsfc.nasa.gov)
David Wynne (davidw@eos.hitc.com)

White Paper AB-1 170-WP-002-001

Abbreviations and Acronyms

ECS EOSDIS Core System

	1. Introduction
	1.1 Purpose
	1.2 Review and Approval

	2. White Paper Format
	2.1 A Need for Structural Metadata
	2.2 Should Structural Metadata be Stored as Attributes or as Text?
	2.3 What is PVL?
	2.4 How Should the Structural Metadata Text be Stored?
	2.5 Where Should Structural Metadata Text Attributes be Store ?
	2.5.1 What Information Should the Structural Metadata Contain?

	2.6 HDF-EOS Configuration Files

